11 research outputs found

    Performance of neural networks for localizing moving objects with an artificial lateral line

    Get PDF
    Fish are able to sense water flow velocities relative to their body with their mechanoreceptive lateral line organ. This organ consists of an array of flow detectors distributed along the fish body. Using the excitation of these individual detectors, fish can determine the location of nearby moving objects. Inspired by this sensory modality, it is shown here how neural networks can be used to extract an object's location from simulated excitation patterns, as can be measured along arrays of stationary artificial flow velocity sensors. The applicability, performance and robustness with respect to input noise of different neural network architectures are compared. When trained and tested under high signal to noise conditions (46 dB), the Extreme Learning Machine architecture performs best with a mean Euclidean error of 0.4% of the maximum depth of the field D, which is taken half the length of the sensor array. Under lower signal to noise conditions Echo State Networks, having recurrent connections, enhance the performance while the Multilayer Perceptron is shown to be the most noise robust architecture. Neural network performance decreased when the source moves close to the sensor array or to the sides of the array. For all considered architectures, increasing the number of detectors per array increased localization performance and robustness

    Extra Domain Data Generation with Generative Adversarial Nets

    No full text
    This study focuses on supplementing data sets with data of absent classes by using other, similar data sets in which these classes are represented. The data is generated using Gener- ative Adversarial Nets (GANs) trained on the CelebA and MNIST datasets. In particular we use and compare Coupled GANs (CoGANs), Auxiliary Classifier GANs (AC-GANs) and novel a combination of the two (CoAC-GANs) to generate image data of domain-class combinations that were removed from the training data. We also train classifiers on the generated data. The results show that AC-GANs and CoAC-GANs can be used successfully to generate labeled data from domain-class combinations that are absent from the training data. Furthermore, they suggest that the preference for one of the two types of generative models depends on training set characteristics. Classifiers trained on the generated data can accurately classify unseen data from the missing domain-class combinations

    Predicting chaotic time series using machine learning techniques

    No full text

    Automated Assessment of COVID-19 Reporting and Data System and Chest CT Severity Scores in Patients Suspected of Having COVID-19 Using Artificial Intelligence

    No full text
    Background: The coronavirus disease 2019 (COVID-19) pandemic has spread across the globe with alarming speed, morbidity, and mortality. Immediate triage of patients with chest infections suspected to be caused by COVID-19 using chest CT may be of assistance when results from definitive viral testing are delayed. Purpose: To develop and validate an artificial intelligence (AI) system to score the likelihood and extent of pulmonary COVID-19 on chest CT scans using the COVID-19 Reporting and Data System (CO-RADS) and CT severity scoring systems. Materials and Methods: The CO-RADS AI system consists of three deep-learning algorithms that automatically segment the five pulmonary lobes, assign a CO-RADS score for the suspicion of COVID-19, and assign a CT severity score for the degree of parenchymal involvement per lobe. This study retrospectively included patients who underwent a nonenhanced chest CT examination because of clinical suspicion of COVID-19 at two medical centers. The system was trained, validated, and tested with data from one of the centers. Data from the second center served as an external test set. Diagnostic performance and agreement with scores assigned by eight independent observers were measured using receiver operating characteristic analysis, linearly weighted kappa values, and classification accuracy. Results: A total of 105 patients (mean age, 62 years +/- 16 [standard deviation]; 61 men) and 262 patients (mean age, 64 years +/- 16; 154 men) were evaluated in the internal and external test sets, respectively. The system discriminated between patients with COVID-19 and those without COVID-19, with areas under the receiver operating characteristic curve of 0.95 (95% CI: 0.91, 0.98) and 0.88 (95% CI: 0.84, 0.93), for the internal and external test sets, respectively. Agreement with the eight human observers was moderate to substantial, with mean linearly weighted k values of 0.60 +/- 0.01 for CO-RADS scores and 0.54 +/- 0.01 for CT severity scores. Conclusion: With high diagnostic performance, the CO-RADS AI system correctly identified patients with COVID-19 using chest CT scans and assigned standardized CO-RADS and CT severity scores that demonstrated good agreement with findings from eight independent observers and generalized well to external data. (C) RSNA, 202
    corecore